

The TESS Exoplanet Mission and Amateur Astronomer Participation

Dennis M. Conti Chair, AAVSO Exoplanet Section Member, TESS Follow-up Observing Program

Wednesday April 18, 2018

TESS: Transiting Exoplanet Survey Satellite The next generation of exoplanet discovery space telescopes

The Big Picture

Is there life on a planet outside our Solar system?

Is the planet rocky?

Can the planet support liquid water?

Does it have an atmosphere?

Does its atmosphere show signs of life?

TESS Predecessors

Kepler

Courtesy : NASA FOV: Small area in Cygnus Targets: Earth-size planets around Sun-like stars Status: Completed Courtesy : NASA FOV: Ecliptic plane Targets: Various Status: Near end-of-life

All Use the Transiting Method

The TESS Mission

- Targets: near-by, bright stars
- Key science objective:
 - "Measure the masses of 50 small (less than 4 Earth radii) transiting planets"
 - mass coupled with radius measurements from photometry, can give us average density
 - density will help us identify rocky planets
- TESS has been called a "finder scope" for JWST (James Webb Space Telescope)
- Amateur participation will be an important part of the TESS pipeline

Other Mission Facts

- Image downloads will occur 2 months after checkout
- TESS will cover 85% of the sky an area 350 times that of Kepler
- TESS will observe into the near-infrared

TESS' Unique Orbit

Note: Orbit is stable for a century!

TESS Orientation

TESS All-Sky Survey

Each region gets 27 days of coverage

Simulated TESS Planet Detections

TESS Operation

- Data downloads occur when TESS is near Earth in its orbit, in order to reduce download times
- Two 13.7 day orbits per sector
 so each sector is viewed for at least 27 days
- Ecliptic poles are viewed for 300 days due to overlapping sectors
- Northern ecliptic imaging to begin mid-2019 (a portion of Southern ecliptic in mid-2018)
- Targets:
 - Overall stars: 470 million
 - Pre-selected stars: approx. 200,000

A Typical Ground-Based Image

Pixel Sizes

Pixel Sizes

Typical TESS Photometric Aperture

Typical TESS Photometric Aperture

The Challenge

- Due to size of TESS pixels and photometric apertures, the light from multiple stars may be blended together
- Thus, periodic dips in light can be caused by either a true exoplanet transit or various types of false positives
- Initial vetting is first done by computer, then by voting of science team members
- Remaining vetting is done by ground-based, follow-up observations

Ground-based Observation Objectives

- Determine the source and cause of two or more periodic dips; could be due to:
 - False alarms (e.g., systematics or noise)
 - False positives
 - True exoplanet transits
- Obtain more accurate planet radii measurements
- Obtain transit time variation (TTV) measurements

TTV Example: WASP-39b

Courtesy: Rick Bria

Observed – Computed: WASP-39b

Photometric Factors Used in Detecting False Positives

False Positive Scenarios and Detection Factors

The target star has a near-by eclipsing binary (NEB)*

V-shape curve of a near-by star has odd-even depth changes

The NEB and target can't be spatially distinguished*

Hierarchical triple: the target star and NEB are orbiting each other

Depth varies in different bandpasses

* Note: could be chance alignments

False Positive Scenarios and Detection Factors (cont'd)

Target star is an eclipsing binary (EB) with blending from a neighbor

A V-shaped curve (if spatially resolvable from neighbor)

Secondary star in an EB is small enough to mimic a planet transit

Depth and radius of target may imply a non-planetary transit

Secondary star in an EB "grazes" the primary star

Typically a V-shaped curve

Example: Detection of a NEB

Observation 1

© Copyright Dennis M. Conti 2018

Observation 2 (11 eclipses later)

© Copyright Dennis M. Conti 2018

Phase Folded Observations

© Copyright Dennis M. Conti 2018

Overall TESS Pipeline

Amateur Astronomer Participation

- Help distinguish false positives: TESS Follow-up Observing Program (TFOP) Seeing Limited Subgroup
- Help refine the ephemerides after planets are confirmed: observation uploads to ExoFOP-TESS
- Products required from observer:
 - Sample FOV and a plate solved image
 - Comparison stars used
 - Light curve
 - Measurement and plot configuration files used

Online Tools

- TESS Transit Finder helps observers find suitable targets for a given location during a given time period
- TESS Observations Coordinator notifies other observers of intent to observe a particular target at a certain time and in a certain wavelength
- ExoFOP-TESS submission of observation summaries and data products

Training Resources

- AAVSO Exoplanet Observing Course an online, four week course:
 - exoplanet observing best practices
 - use of AstroImageJ for image calibration, differential photometry, and exoplanet transit modeling
- Documentation: "A Practical Guide to Exoplanet Observing" (http://astrodennis.com)

Best Practices

- Image for at least 30 minutes pre-ingress and post-egress
- Use autoguiding to achieve minimal image shift over a 4-6 hour observation window
 - Preferably, guide on the science image
- Use a precise timing source
- Use BJD_{TDB} as timebase
- Handle meridian flips efficiently
- Maximize SNR of target without reaching non-linearity or saturation

Future NASA Exoplanet Missions

© Copyright Dennis M. Conti 2018

Starshade Technology

Courtesy: NASA

Summary

- Amateur astronomers have already proven their value in supporting existing exoplanet surveys and missions
- The TESS mission provides amateurs with the opportunity to participate in the next frontier of exoplanet discovery
- Opportunities for co-authorship of scientific papers provide an additional benefit
- Amateurs with astro-imaging experience already have the basic complement of equipment and techniques
- Training opportunities, software and documentation are available to enhance one's exoplanet observing skills

Contact Information

Email: dennis@astrodennis.com

Website: http://astrodennis.com